shell bypass 403

UnknownSec Shell

: /lib64/python2.7/ [ drwxr-xr-x ]

name : numbers.pyo
�
zfc@ s�dZddlmZddlmZmZmZdddddgZdefd	��YZ	de	fd
��YZ
e
je�de
fd��YZ
e
je�de
fd��YZdefd
��YZeje�eje�dS(s~Abstract Base Classes (ABCs) for numbers, according to PEP 3141.

TODO: Fill out more detailed documentation on the operators.i����(tdivision(tABCMetatabstractmethodtabstractpropertytNumbertComplextRealtRationaltIntegralcB s eZdZeZdZdZRS(s�All numbers inherit from this class.

    If you just want to check if an argument x is a number, without
    caring what kind, use isinstance(x, Number).
    (N(t__name__t
__module__t__doc__Rt
__metaclass__t	__slots__tNonet__hash__(((s/usr/lib64/python2.7/numbers.pyR
scB sFeZdZdZed��Zd�Zed��Zed��Z	ed��Z
ed��Zed��Zed��Z
d	�Zd
�Zed��Zed��Zed
��Zed��Zed��Zed��Zed��Zed��Zed��Zed��Zed��Zd�ZRS(saComplex defines the operations that work on the builtin complex type.

    In short, those are: a conversion to complex, .real, .imag, +, -,
    *, /, abs(), .conjugate, ==, and !=.

    If it is given heterogenous arguments, and doesn't have special
    knowledge about them, it should fall back to the builtin complex
    type as described below.
    cC sdS(s<Return a builtin complex instance. Called for complex(self).N((tself((s/usr/lib64/python2.7/numbers.pyt__complex__/tcC s
|dkS(s)True if self != 0. Called for bool(self).i((R((s/usr/lib64/python2.7/numbers.pyt__nonzero__4scC s
t�dS(sXRetrieve the real component of this number.

        This should subclass Real.
        N(tNotImplementedError(R((s/usr/lib64/python2.7/numbers.pytreal8scC s
t�dS(s]Retrieve the imaginary component of this number.

        This should subclass Real.
        N(R(R((s/usr/lib64/python2.7/numbers.pytimag@scC s
t�dS(sself + otherN(R(Rtother((s/usr/lib64/python2.7/numbers.pyt__add__HscC s
t�dS(sother + selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__radd__MscC s
t�dS(s-selfN(R(R((s/usr/lib64/python2.7/numbers.pyt__neg__RscC s
t�dS(s+selfN(R(R((s/usr/lib64/python2.7/numbers.pyt__pos__WscC s	||S(sself - other((RR((s/usr/lib64/python2.7/numbers.pyt__sub__\scC s	||S(sother - self((RR((s/usr/lib64/python2.7/numbers.pyt__rsub__`scC s
t�dS(sself * otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__mul__dscC s
t�dS(sother * selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rmul__iscC s
t�dS(sPself / other without __future__ division

        May promote to float.
        N(R(RR((s/usr/lib64/python2.7/numbers.pyt__div__nscC s
t�dS(s(other / self without __future__ divisionN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rdiv__vscC s
t�dS(s`self / other with __future__ division.

        Should promote to float when necessary.
        N(R(RR((s/usr/lib64/python2.7/numbers.pyt__truediv__{scC s
t�dS(s%other / self with __future__ divisionN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rtruediv__�scC s
t�dS(sBself**exponent; should promote to float or complex when necessary.N(R(Rtexponent((s/usr/lib64/python2.7/numbers.pyt__pow__�scC s
t�dS(sbase ** selfN(R(Rtbase((s/usr/lib64/python2.7/numbers.pyt__rpow__�scC s
t�dS(s7Returns the Real distance from 0. Called for abs(self).N(R(R((s/usr/lib64/python2.7/numbers.pyt__abs__�scC s
t�dS(s$(x+y*i).conjugate() returns (x-y*i).N(R(R((s/usr/lib64/python2.7/numbers.pyt	conjugate�scC s
t�dS(s
self == otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__eq__�scC s||kS(s
self != other((RR((s/usr/lib64/python2.7/numbers.pyt__ne__�s((R	R
RR
RRRRRRRRRRRRRRR R!R"R#R%R'R(R)R*R+(((s/usr/lib64/python2.7/numbers.pyR"s0				cB s�eZdZdZed��Zed��Zd�Zd�Zed��Z	ed��Z
ed��Zed��Zed	��Z
ed
��Zd�Zed��Zed
��Zd�ZRS(s�To Complex, Real adds the operations that work on real numbers.

    In short, those are: a conversion to float, trunc(), divmod,
    %, <, <=, >, and >=.

    Real also provides defaults for the derived operations.
    cC s
t�dS(sTAny Real can be converted to a native float object.

        Called for float(self).N(R(R((s/usr/lib64/python2.7/numbers.pyt	__float__�scC s
t�dS(sGtrunc(self): Truncates self to an Integral.

        Returns an Integral i such that:
          * i>0 iff self>0;
          * abs(i) <= abs(self);
          * for any Integral j satisfying the first two conditions,
            abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
        i.e. "truncate towards 0".
        N(R(R((s/usr/lib64/python2.7/numbers.pyt	__trunc__�scC s||||fS(s�divmod(self, other): The pair (self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        ((RR((s/usr/lib64/python2.7/numbers.pyt
__divmod__�scC s||||fS(s�divmod(other, self): The pair (self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        ((RR((s/usr/lib64/python2.7/numbers.pyt__rdivmod__�scC s
t�dS(s)self // other: The floor() of self/other.N(R(RR((s/usr/lib64/python2.7/numbers.pyt__floordiv__�scC s
t�dS(s)other // self: The floor() of other/self.N(R(RR((s/usr/lib64/python2.7/numbers.pyt
__rfloordiv__�scC s
t�dS(sself % otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__mod__�scC s
t�dS(sother % selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rmod__�scC s
t�dS(sRself < other

        < on Reals defines a total ordering, except perhaps for NaN.N(R(RR((s/usr/lib64/python2.7/numbers.pyt__lt__�scC s
t�dS(s
self <= otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__le__�scC stt|��S(s(complex(self) == complex(float(self), 0)(tcomplextfloat(R((s/usr/lib64/python2.7/numbers.pyR�scC s|
S(s&Real numbers are their real component.((R((s/usr/lib64/python2.7/numbers.pyR�scC sdS(s)Real numbers have no imaginary component.i((R((s/usr/lib64/python2.7/numbers.pyRscC s|
S(sConjugate is a no-op for Reals.((R((s/usr/lib64/python2.7/numbers.pyR)s((R	R
RR
RR,R-R.R/R0R1R2R3R4R5RtpropertyRRR)(((s/usr/lib64/python2.7/numbers.pyR�s 
			cB s;eZdZdZed��Zed��Zd�ZRS(s6.numerator and .denominator should be in lowest terms.cC s
t�dS(N(R(R((s/usr/lib64/python2.7/numbers.pyt	numeratorscC s
t�dS(N(R(R((s/usr/lib64/python2.7/numbers.pytdenominatorscC s|j|jS(sfloat(self) = self.numerator / self.denominator

        It's important that this conversion use the integer's "true"
        division rather than casting one side to float before dividing
        so that ratios of huge integers convert without overflowing.

        (R9R:(R((s/usr/lib64/python2.7/numbers.pyR,s((R	R
RR
RR9R:R,(((s/usr/lib64/python2.7/numbers.pyRs
cB s
eZdZdZed��Zd�Zedd��Zed��Z	ed��Z
ed��Zed��Zed��Z
ed	��Zed
��Zed��Zed��Zed
��Zed��Zd�Zed��Zed��ZRS(sAIntegral adds a conversion to long and the bit-string operations.cC s
t�dS(s
long(self)N(R(R((s/usr/lib64/python2.7/numbers.pyt__long__,scC s
t|�S(s6Called whenever an index is needed, such as in slicing(tlong(R((s/usr/lib64/python2.7/numbers.pyt	__index__1scC s
t�dS(s4self ** exponent % modulus, but maybe faster.

        Accept the modulus argument if you want to support the
        3-argument version of pow(). Raise a TypeError if exponent < 0
        or any argument isn't Integral. Otherwise, just implement the
        2-argument version described in Complex.
        N(R(RR$tmodulus((s/usr/lib64/python2.7/numbers.pyR%5s	cC s
t�dS(s
self << otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt
__lshift__@scC s
t�dS(s
other << selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rlshift__EscC s
t�dS(s
self >> otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt
__rshift__JscC s
t�dS(s
other >> selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rrshift__OscC s
t�dS(sself & otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__and__TscC s
t�dS(sother & selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rand__YscC s
t�dS(sself ^ otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__xor__^scC s
t�dS(sother ^ selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rxor__cscC s
t�dS(sself | otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__or__hscC s
t�dS(sother | selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__ror__mscC s
t�dS(s~selfN(R(R((s/usr/lib64/python2.7/numbers.pyt
__invert__rscC stt|��S(s float(self) == float(long(self))(R7R<(R((s/usr/lib64/python2.7/numbers.pyR,xscC s|
S(s"Integers are their own numerators.((R((s/usr/lib64/python2.7/numbers.pyR9|scC sdS(s!Integers have a denominator of 1.i((R((s/usr/lib64/python2.7/numbers.pyR:�s(N(R	R
RR
RR;R=RR%R?R@RARBRCRDRERFRGRHRIR,R8R9R:(((s/usr/lib64/python2.7/numbers.pyR's(	
	N(Rt
__future__RtabcRRRt__all__tobjectRRtregisterR6RR7RRtintR<(((s/usr/lib64/python2.7/numbers.pyt<module>s�
b
_


© 2025 UnknownSec
The Future of Energy | Anyleson - Learning Platform
INR (₹)
India Rupee
$
United States Dollar
The Future of Energy
Special Offer Limited Offer
Day
Hr
Min
Sec
40% Off

The Future of Energy

in Science
2.50
(1 Ratings)
Created by Kate Williams

Report course

Please describe about the report short and clearly.

Share

Share course with your friends

Buy with points