shell bypass 403

UnknownSec Shell

: /lib64/python3.6/multiprocessing/ [ drwxr-xr-x ]

name : process.py
#
# Module providing the `Process` class which emulates `threading.Thread`
#
# multiprocessing/process.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

__all__ = ['BaseProcess', 'current_process', 'active_children']

#
# Imports
#

import os
import sys
import signal
import itertools
from _weakrefset import WeakSet

#
#
#

try:
    ORIGINAL_DIR = os.path.abspath(os.getcwd())
except OSError:
    ORIGINAL_DIR = None

#
# Public functions
#

def current_process():
    '''
    Return process object representing the current process
    '''
    return _current_process

def active_children():
    '''
    Return list of process objects corresponding to live child processes
    '''
    _cleanup()
    return list(_children)

#
#
#

def _cleanup():
    # check for processes which have finished
    for p in list(_children):
        if p._popen.poll() is not None:
            _children.discard(p)

#
# The `Process` class
#

class BaseProcess(object):
    '''
    Process objects represent activity that is run in a separate process

    The class is analogous to `threading.Thread`
    '''
    def _Popen(self):
        raise NotImplementedError

    def __init__(self, group=None, target=None, name=None, args=(), kwargs={},
                 *, daemon=None):
        assert group is None, 'group argument must be None for now'
        count = next(_process_counter)
        self._identity = _current_process._identity + (count,)
        self._config = _current_process._config.copy()
        self._parent_pid = os.getpid()
        self._popen = None
        self._target = target
        self._args = tuple(args)
        self._kwargs = dict(kwargs)
        self._name = name or type(self).__name__ + '-' + \
                     ':'.join(str(i) for i in self._identity)
        if daemon is not None:
            self.daemon = daemon
        _dangling.add(self)

    def run(self):
        '''
        Method to be run in sub-process; can be overridden in sub-class
        '''
        if self._target:
            self._target(*self._args, **self._kwargs)

    def start(self):
        '''
        Start child process
        '''
        assert self._popen is None, 'cannot start a process twice'
        assert self._parent_pid == os.getpid(), \
               'can only start a process object created by current process'
        assert not _current_process._config.get('daemon'), \
               'daemonic processes are not allowed to have children'
        _cleanup()
        self._popen = self._Popen(self)
        self._sentinel = self._popen.sentinel
        # Avoid a refcycle if the target function holds an indirect
        # reference to the process object (see bpo-30775)
        del self._target, self._args, self._kwargs
        _children.add(self)

    def terminate(self):
        '''
        Terminate process; sends SIGTERM signal or uses TerminateProcess()
        '''
        self._popen.terminate()

    def join(self, timeout=None):
        '''
        Wait until child process terminates
        '''
        assert self._parent_pid == os.getpid(), 'can only join a child process'
        assert self._popen is not None, 'can only join a started process'
        res = self._popen.wait(timeout)
        if res is not None:
            _children.discard(self)

    def is_alive(self):
        '''
        Return whether process is alive
        '''
        if self is _current_process:
            return True
        assert self._parent_pid == os.getpid(), 'can only test a child process'

        if self._popen is None:
            return False

        returncode = self._popen.poll()
        if returncode is None:
            return True
        else:
            _children.discard(self)
            return False

    @property
    def name(self):
        return self._name

    @name.setter
    def name(self, name):
        assert isinstance(name, str), 'name must be a string'
        self._name = name

    @property
    def daemon(self):
        '''
        Return whether process is a daemon
        '''
        return self._config.get('daemon', False)

    @daemon.setter
    def daemon(self, daemonic):
        '''
        Set whether process is a daemon
        '''
        assert self._popen is None, 'process has already started'
        self._config['daemon'] = daemonic

    @property
    def authkey(self):
        return self._config['authkey']

    @authkey.setter
    def authkey(self, authkey):
        '''
        Set authorization key of process
        '''
        self._config['authkey'] = AuthenticationString(authkey)

    @property
    def exitcode(self):
        '''
        Return exit code of process or `None` if it has yet to stop
        '''
        if self._popen is None:
            return self._popen
        return self._popen.poll()

    @property
    def ident(self):
        '''
        Return identifier (PID) of process or `None` if it has yet to start
        '''
        if self is _current_process:
            return os.getpid()
        else:
            return self._popen and self._popen.pid

    pid = ident

    @property
    def sentinel(self):
        '''
        Return a file descriptor (Unix) or handle (Windows) suitable for
        waiting for process termination.
        '''
        try:
            return self._sentinel
        except AttributeError:
            raise ValueError("process not started")

    def __repr__(self):
        if self is _current_process:
            status = 'started'
        elif self._parent_pid != os.getpid():
            status = 'unknown'
        elif self._popen is None:
            status = 'initial'
        else:
            if self._popen.poll() is not None:
                status = self.exitcode
            else:
                status = 'started'

        if type(status) is int:
            if status == 0:
                status = 'stopped'
            else:
                status = 'stopped[%s]' % _exitcode_to_name.get(status, status)

        return '<%s(%s, %s%s)>' % (type(self).__name__, self._name,
                                   status, self.daemon and ' daemon' or '')

    ##

    def _bootstrap(self):
        from . import util, context
        global _current_process, _process_counter, _children

        try:
            if self._start_method is not None:
                context._force_start_method(self._start_method)
            _process_counter = itertools.count(1)
            _children = set()
            util._close_stdin()
            old_process = _current_process
            _current_process = self
            try:
                util._finalizer_registry.clear()
                util._run_after_forkers()
            finally:
                # delay finalization of the old process object until after
                # _run_after_forkers() is executed
                del old_process
            util.info('child process calling self.run()')
            try:
                self.run()
                exitcode = 0
            finally:
                util._exit_function()
        except SystemExit as e:
            if not e.args:
                exitcode = 1
            elif isinstance(e.args[0], int):
                exitcode = e.args[0]
            else:
                sys.stderr.write(str(e.args[0]) + '\n')
                exitcode = 1
        except:
            exitcode = 1
            import traceback
            sys.stderr.write('Process %s:\n' % self.name)
            traceback.print_exc()
        finally:
            util.info('process exiting with exitcode %d' % exitcode)
            util._flush_std_streams()

        return exitcode

#
# We subclass bytes to avoid accidental transmission of auth keys over network
#

class AuthenticationString(bytes):
    def __reduce__(self):
        from .context import get_spawning_popen
        if get_spawning_popen() is None:
            raise TypeError(
                'Pickling an AuthenticationString object is '
                'disallowed for security reasons'
                )
        return AuthenticationString, (bytes(self),)

#
# Create object representing the main process
#

class _MainProcess(BaseProcess):

    def __init__(self):
        self._identity = ()
        self._name = 'MainProcess'
        self._parent_pid = None
        self._popen = None
        self._config = {'authkey': AuthenticationString(os.urandom(32)),
                        'semprefix': '/mp'}
        # Note that some versions of FreeBSD only allow named
        # semaphores to have names of up to 14 characters.  Therefore
        # we choose a short prefix.
        #
        # On MacOSX in a sandbox it may be necessary to use a
        # different prefix -- see #19478.
        #
        # Everything in self._config will be inherited by descendant
        # processes.


_current_process = _MainProcess()
_process_counter = itertools.count(1)
_children = set()
del _MainProcess

#
# Give names to some return codes
#

_exitcode_to_name = {}

for name, signum in list(signal.__dict__.items()):
    if name[:3]=='SIG' and '_' not in name:
        _exitcode_to_name[-signum] = name

# For debug and leak testing
_dangling = WeakSet()

© 2025 UnknownSec
Web Design for Beginners | Anyleson - Learning Platform
INR (₹)
India Rupee
$
United States Dollar
Web Design for Beginners

Web Design for Beginners

in Design
Created by Linda Anderson
+2
5 Users are following this upcoming course
Course Published
This course was published already and you can check the main course
Course
Web Design for Beginners
in Design
4.25
1:45 Hours
8 Jul 2021
₹11.80

What you will learn?

Create any website layout you can imagine

Support any device size with Responsive (mobile-friendly) Design

Add tasteful animations and effects with CSS3

Course description

You can launch a new career in web development today by learning HTML & CSS. You don't need a computer science degree or expensive software. All you need is a computer, a bit of time, a lot of determination, and a teacher you trust. I've taught HTML and CSS to countless coworkers and held training sessions for fortune 100 companies. I am that teacher you can trust. 


Don't limit yourself by creating websites with some cheesy “site-builder" tool. This course teaches you how to take 100% control over your webpages by using the same concepts that every professional website is created with.


This course does not assume any prior experience. We start at square one and learn together bit by bit. By the end of the course you will have created (by hand) a website that looks great on phones, tablets, laptops, and desktops alike.


In the summer of 2020 the course has received a new section where we push our website live up onto the web using the free GitHub Pages service; this means you'll be able to share a link to what you've created with your friends, family, colleagues and the world!

Requirements

No prerequisite knowledge required

No special software required

Comments (0)

Report course

Please describe about the report short and clearly.

Share

Share course with your friends