shell bypass 403

UnknownSec Shell

: /lib64/python3.6/multiprocessing/ [ drwxr-xr-x ]

name : synchronize.py
#
# Module implementing synchronization primitives
#
# multiprocessing/synchronize.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

__all__ = [
    'Lock', 'RLock', 'Semaphore', 'BoundedSemaphore', 'Condition', 'Event'
    ]

import threading
import sys
import tempfile
import _multiprocessing
import time

from . import context
from . import process
from . import util

# Try to import the mp.synchronize module cleanly, if it fails
# raise ImportError for platforms lacking a working sem_open implementation.
# See issue 3770
try:
    from _multiprocessing import SemLock, sem_unlink
except (ImportError):
    raise ImportError("This platform lacks a functioning sem_open" +
                      " implementation, therefore, the required" +
                      " synchronization primitives needed will not" +
                      " function, see issue 3770.")

#
# Constants
#

RECURSIVE_MUTEX, SEMAPHORE = list(range(2))
SEM_VALUE_MAX = _multiprocessing.SemLock.SEM_VALUE_MAX

#
# Base class for semaphores and mutexes; wraps `_multiprocessing.SemLock`
#

class SemLock(object):

    _rand = tempfile._RandomNameSequence()

    def __init__(self, kind, value, maxvalue, *, ctx):
        if ctx is None:
            ctx = context._default_context.get_context()
        name = ctx.get_start_method()
        unlink_now = sys.platform == 'win32' or name == 'fork'
        for i in range(100):
            try:
                sl = self._semlock = _multiprocessing.SemLock(
                    kind, value, maxvalue, self._make_name(),
                    unlink_now)
            except FileExistsError:
                pass
            else:
                break
        else:
            raise FileExistsError('cannot find name for semaphore')

        util.debug('created semlock with handle %s' % sl.handle)
        self._make_methods()

        if sys.platform != 'win32':
            def _after_fork(obj):
                obj._semlock._after_fork()
            util.register_after_fork(self, _after_fork)

        if self._semlock.name is not None:
            # We only get here if we are on Unix with forking
            # disabled.  When the object is garbage collected or the
            # process shuts down we unlink the semaphore name
            from .semaphore_tracker import register
            register(self._semlock.name)
            util.Finalize(self, SemLock._cleanup, (self._semlock.name,),
                          exitpriority=0)

    @staticmethod
    def _cleanup(name):
        from .semaphore_tracker import unregister
        sem_unlink(name)
        unregister(name)

    def _make_methods(self):
        self.acquire = self._semlock.acquire
        self.release = self._semlock.release

    def __enter__(self):
        return self._semlock.__enter__()

    def __exit__(self, *args):
        return self._semlock.__exit__(*args)

    def __getstate__(self):
        context.assert_spawning(self)
        sl = self._semlock
        if sys.platform == 'win32':
            h = context.get_spawning_popen().duplicate_for_child(sl.handle)
        else:
            h = sl.handle
        return (h, sl.kind, sl.maxvalue, sl.name)

    def __setstate__(self, state):
        self._semlock = _multiprocessing.SemLock._rebuild(*state)
        util.debug('recreated blocker with handle %r' % state[0])
        self._make_methods()

    @staticmethod
    def _make_name():
        return '%s-%s' % (process.current_process()._config['semprefix'],
                          next(SemLock._rand))

#
# Semaphore
#

class Semaphore(SemLock):

    def __init__(self, value=1, *, ctx):
        SemLock.__init__(self, SEMAPHORE, value, SEM_VALUE_MAX, ctx=ctx)

    def get_value(self):
        return self._semlock._get_value()

    def __repr__(self):
        try:
            value = self._semlock._get_value()
        except Exception:
            value = 'unknown'
        return '<%s(value=%s)>' % (self.__class__.__name__, value)

#
# Bounded semaphore
#

class BoundedSemaphore(Semaphore):

    def __init__(self, value=1, *, ctx):
        SemLock.__init__(self, SEMAPHORE, value, value, ctx=ctx)

    def __repr__(self):
        try:
            value = self._semlock._get_value()
        except Exception:
            value = 'unknown'
        return '<%s(value=%s, maxvalue=%s)>' % \
               (self.__class__.__name__, value, self._semlock.maxvalue)

#
# Non-recursive lock
#

class Lock(SemLock):

    def __init__(self, *, ctx):
        SemLock.__init__(self, SEMAPHORE, 1, 1, ctx=ctx)

    def __repr__(self):
        try:
            if self._semlock._is_mine():
                name = process.current_process().name
                if threading.current_thread().name != 'MainThread':
                    name += '|' + threading.current_thread().name
            elif self._semlock._get_value() == 1:
                name = 'None'
            elif self._semlock._count() > 0:
                name = 'SomeOtherThread'
            else:
                name = 'SomeOtherProcess'
        except Exception:
            name = 'unknown'
        return '<%s(owner=%s)>' % (self.__class__.__name__, name)

#
# Recursive lock
#

class RLock(SemLock):

    def __init__(self, *, ctx):
        SemLock.__init__(self, RECURSIVE_MUTEX, 1, 1, ctx=ctx)

    def __repr__(self):
        try:
            if self._semlock._is_mine():
                name = process.current_process().name
                if threading.current_thread().name != 'MainThread':
                    name += '|' + threading.current_thread().name
                count = self._semlock._count()
            elif self._semlock._get_value() == 1:
                name, count = 'None', 0
            elif self._semlock._count() > 0:
                name, count = 'SomeOtherThread', 'nonzero'
            else:
                name, count = 'SomeOtherProcess', 'nonzero'
        except Exception:
            name, count = 'unknown', 'unknown'
        return '<%s(%s, %s)>' % (self.__class__.__name__, name, count)

#
# Condition variable
#

class Condition(object):

    def __init__(self, lock=None, *, ctx):
        self._lock = lock or ctx.RLock()
        self._sleeping_count = ctx.Semaphore(0)
        self._woken_count = ctx.Semaphore(0)
        self._wait_semaphore = ctx.Semaphore(0)
        self._make_methods()

    def __getstate__(self):
        context.assert_spawning(self)
        return (self._lock, self._sleeping_count,
                self._woken_count, self._wait_semaphore)

    def __setstate__(self, state):
        (self._lock, self._sleeping_count,
         self._woken_count, self._wait_semaphore) = state
        self._make_methods()

    def __enter__(self):
        return self._lock.__enter__()

    def __exit__(self, *args):
        return self._lock.__exit__(*args)

    def _make_methods(self):
        self.acquire = self._lock.acquire
        self.release = self._lock.release

    def __repr__(self):
        try:
            num_waiters = (self._sleeping_count._semlock._get_value() -
                           self._woken_count._semlock._get_value())
        except Exception:
            num_waiters = 'unknown'
        return '<%s(%s, %s)>' % (self.__class__.__name__, self._lock, num_waiters)

    def wait(self, timeout=None):
        assert self._lock._semlock._is_mine(), \
               'must acquire() condition before using wait()'

        # indicate that this thread is going to sleep
        self._sleeping_count.release()

        # release lock
        count = self._lock._semlock._count()
        for i in range(count):
            self._lock.release()

        try:
            # wait for notification or timeout
            return self._wait_semaphore.acquire(True, timeout)
        finally:
            # indicate that this thread has woken
            self._woken_count.release()

            # reacquire lock
            for i in range(count):
                self._lock.acquire()

    def notify(self):
        assert self._lock._semlock._is_mine(), 'lock is not owned'
        assert not self._wait_semaphore.acquire(False)

        # to take account of timeouts since last notify() we subtract
        # woken_count from sleeping_count and rezero woken_count
        while self._woken_count.acquire(False):
            res = self._sleeping_count.acquire(False)
            assert res

        if self._sleeping_count.acquire(False): # try grabbing a sleeper
            self._wait_semaphore.release()      # wake up one sleeper
            self._woken_count.acquire()         # wait for the sleeper to wake

            # rezero _wait_semaphore in case a timeout just happened
            self._wait_semaphore.acquire(False)

    def notify_all(self):
        assert self._lock._semlock._is_mine(), 'lock is not owned'
        assert not self._wait_semaphore.acquire(False)

        # to take account of timeouts since last notify*() we subtract
        # woken_count from sleeping_count and rezero woken_count
        while self._woken_count.acquire(False):
            res = self._sleeping_count.acquire(False)
            assert res

        sleepers = 0
        while self._sleeping_count.acquire(False):
            self._wait_semaphore.release()        # wake up one sleeper
            sleepers += 1

        if sleepers:
            for i in range(sleepers):
                self._woken_count.acquire()       # wait for a sleeper to wake

            # rezero wait_semaphore in case some timeouts just happened
            while self._wait_semaphore.acquire(False):
                pass

    def wait_for(self, predicate, timeout=None):
        result = predicate()
        if result:
            return result
        if timeout is not None:
            endtime = time.monotonic() + timeout
        else:
            endtime = None
            waittime = None
        while not result:
            if endtime is not None:
                waittime = endtime - time.monotonic()
                if waittime <= 0:
                    break
            self.wait(waittime)
            result = predicate()
        return result

#
# Event
#

class Event(object):

    def __init__(self, *, ctx):
        self._cond = ctx.Condition(ctx.Lock())
        self._flag = ctx.Semaphore(0)

    def is_set(self):
        with self._cond:
            if self._flag.acquire(False):
                self._flag.release()
                return True
            return False

    def set(self):
        with self._cond:
            self._flag.acquire(False)
            self._flag.release()
            self._cond.notify_all()

    def clear(self):
        with self._cond:
            self._flag.acquire(False)

    def wait(self, timeout=None):
        with self._cond:
            if self._flag.acquire(False):
                self._flag.release()
            else:
                self._cond.wait(timeout)

            if self._flag.acquire(False):
                self._flag.release()
                return True
            return False

#
# Barrier
#

class Barrier(threading.Barrier):

    def __init__(self, parties, action=None, timeout=None, *, ctx):
        import struct
        from .heap import BufferWrapper
        wrapper = BufferWrapper(struct.calcsize('i') * 2)
        cond = ctx.Condition()
        self.__setstate__((parties, action, timeout, cond, wrapper))
        self._state = 0
        self._count = 0

    def __setstate__(self, state):
        (self._parties, self._action, self._timeout,
         self._cond, self._wrapper) = state
        self._array = self._wrapper.create_memoryview().cast('i')

    def __getstate__(self):
        return (self._parties, self._action, self._timeout,
                self._cond, self._wrapper)

    @property
    def _state(self):
        return self._array[0]

    @_state.setter
    def _state(self, value):
        self._array[0] = value

    @property
    def _count(self):
        return self._array[1]

    @_count.setter
    def _count(self, value):
        self._array[1] = value

© 2025 UnknownSec
Web Design for Beginners | Anyleson - Learning Platform
INR (₹)
India Rupee
$
United States Dollar
Web Design for Beginners

Web Design for Beginners

in Design
Created by Linda Anderson
+2
5 Users are following this upcoming course
Course Published
This course was published already and you can check the main course
Course
Web Design for Beginners
in Design
4.25
1:45 Hours
8 Jul 2021
₹11.80

What you will learn?

Create any website layout you can imagine

Support any device size with Responsive (mobile-friendly) Design

Add tasteful animations and effects with CSS3

Course description

You can launch a new career in web development today by learning HTML & CSS. You don't need a computer science degree or expensive software. All you need is a computer, a bit of time, a lot of determination, and a teacher you trust. I've taught HTML and CSS to countless coworkers and held training sessions for fortune 100 companies. I am that teacher you can trust. 


Don't limit yourself by creating websites with some cheesy “site-builder" tool. This course teaches you how to take 100% control over your webpages by using the same concepts that every professional website is created with.


This course does not assume any prior experience. We start at square one and learn together bit by bit. By the end of the course you will have created (by hand) a website that looks great on phones, tablets, laptops, and desktops alike.


In the summer of 2020 the course has received a new section where we push our website live up onto the web using the free GitHub Pages service; this means you'll be able to share a link to what you've created with your friends, family, colleagues and the world!

Requirements

No prerequisite knowledge required

No special software required

Comments (0)

Report course

Please describe about the report short and clearly.

Share

Share course with your friends