shell bypass 403

UnknownSec Shell

: /usr/include/apr-1/ [ drwxr-xr-x ]

name : apr_allocator.h
/* Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef APR_ALLOCATOR_H
#define APR_ALLOCATOR_H

/**
 * @file apr_allocator.h
 * @brief APR Internal Memory Allocation
 */

#include "apr.h"
#include "apr_errno.h"
#define APR_WANT_MEMFUNC /**< For no good reason? */
#include "apr_want.h"

#ifdef __cplusplus
extern "C" {
#endif

/**
 * @defgroup apr_allocator Internal Memory Allocation
 * @ingroup APR 
 * @{
 */

/** the allocator structure */
typedef struct apr_allocator_t apr_allocator_t;
/** the structure which holds information about the allocation */
typedef struct apr_memnode_t apr_memnode_t;

/** basic memory node structure
 * @note The next, ref and first_avail fields are available for use by the
 *       caller of apr_allocator_alloc(), the remaining fields are read-only.
 *       The next field has to be used with caution and sensibly set when the
 *       memnode is passed back to apr_allocator_free().  See apr_allocator_free()
 *       for details.  
 *       The ref and first_avail fields will be properly restored by
 *       apr_allocator_free().
 */
struct apr_memnode_t {
    apr_memnode_t *next;            /**< next memnode */
    apr_memnode_t **ref;            /**< reference to self */
    apr_uint32_t   index;           /**< size */
    apr_uint32_t   free_index;      /**< how much free */
    char          *first_avail;     /**< pointer to first free memory */
    char          *endp;            /**< pointer to end of free memory */
};

/** The base size of a memory node - aligned.  */
#define APR_MEMNODE_T_SIZE APR_ALIGN_DEFAULT(sizeof(apr_memnode_t))

/** Symbolic constants */
#define APR_ALLOCATOR_MAX_FREE_UNLIMITED 0

/**
 * Create a new allocator
 * @param allocator The allocator we have just created.
 *
 */
APR_DECLARE(apr_status_t) apr_allocator_create(apr_allocator_t **allocator)
                          __attribute__((nonnull(1)));

/**
 * Destroy an allocator
 * @param allocator The allocator to be destroyed
 * @remark Any memnodes not given back to the allocator prior to destroying
 *         will _not_ be free()d.
 */
APR_DECLARE(void) apr_allocator_destroy(apr_allocator_t *allocator)
                  __attribute__((nonnull(1)));

/**
 * Allocate a block of mem from the allocator
 * @param allocator The allocator to allocate from
 * @param size The size of the mem to allocate (excluding the
 *        memnode structure)
 */
APR_DECLARE(apr_memnode_t *) apr_allocator_alloc(apr_allocator_t *allocator,
                                                 apr_size_t size)
                             __attribute__((nonnull(1)));

/**
 * Free a list of blocks of mem, giving them back to the allocator.
 * The list is typically terminated by a memnode with its next field
 * set to NULL.
 * @param allocator The allocator to give the mem back to
 * @param memnode The memory node to return
 */
APR_DECLARE(void) apr_allocator_free(apr_allocator_t *allocator,
                                     apr_memnode_t *memnode)
                  __attribute__((nonnull(1,2)));
 
/**
 * Get the true size that would be allocated for the given size (including
 * the header and alignment).
 * @param list The allocator from which to the memory would be allocated
 * @param size The size to align
 * @return The aligned size (or zero on apr_size_t overflow)
 */
APR_DECLARE(apr_size_t) apr_allocator_align(apr_allocator_t *allocator,
                                            apr_size_t size);

#include "apr_pools.h"

/**
 * Set the owner of the allocator
 * @param allocator The allocator to set the owner for
 * @param pool The pool that is to own the allocator
 * @remark Typically pool is the highest level pool using the allocator
 */
/*
 * XXX: see if we can come up with something a bit better.  Currently
 * you can make a pool an owner, but if the pool doesn't use the allocator
 * the allocator will never be destroyed.
 */
APR_DECLARE(void) apr_allocator_owner_set(apr_allocator_t *allocator,
                                          apr_pool_t *pool)
                  __attribute__((nonnull(1)));

/**
 * Get the current owner of the allocator
 * @param allocator The allocator to get the owner from
 */
APR_DECLARE(apr_pool_t *) apr_allocator_owner_get(apr_allocator_t *allocator)
                          __attribute__((nonnull(1)));

/**
 * Set the current threshold at which the allocator should start
 * giving blocks back to the system.
 * @param allocator The allocator to set the threshold on
 * @param size The threshold.  0 == unlimited.
 */
APR_DECLARE(void) apr_allocator_max_free_set(apr_allocator_t *allocator,
                                             apr_size_t size)
                  __attribute__((nonnull(1)));

#include "apr_thread_mutex.h"

#if APR_HAS_THREADS
/**
 * Set a mutex for the allocator to use
 * @param allocator The allocator to set the mutex for
 * @param mutex The mutex
 */
APR_DECLARE(void) apr_allocator_mutex_set(apr_allocator_t *allocator,
                                          apr_thread_mutex_t *mutex)
                  __attribute__((nonnull(1)));

/**
 * Get the mutex currently set for the allocator
 * @param allocator The allocator
 */
APR_DECLARE(apr_thread_mutex_t *) apr_allocator_mutex_get(
                                          apr_allocator_t *allocator)
                                  __attribute__((nonnull(1)));

#endif /* APR_HAS_THREADS */

/** @} */

#ifdef __cplusplus
}
#endif

#endif /* !APR_ALLOCATOR_H */

© 2025 UnknownSec
Web Design for Beginners | Anyleson - Learning Platform
INR (₹)
India Rupee
$
United States Dollar
Web Design for Beginners

Web Design for Beginners

in Design
Created by Linda Anderson
+2
5 Users are following this upcoming course
Course Published
This course was published already and you can check the main course
Course
Web Design for Beginners
in Design
4.25
1:45 Hours
8 Jul 2021
₹11.80

What you will learn?

Create any website layout you can imagine

Support any device size with Responsive (mobile-friendly) Design

Add tasteful animations and effects with CSS3

Course description

You can launch a new career in web development today by learning HTML & CSS. You don't need a computer science degree or expensive software. All you need is a computer, a bit of time, a lot of determination, and a teacher you trust. I've taught HTML and CSS to countless coworkers and held training sessions for fortune 100 companies. I am that teacher you can trust. 


Don't limit yourself by creating websites with some cheesy “site-builder" tool. This course teaches you how to take 100% control over your webpages by using the same concepts that every professional website is created with.


This course does not assume any prior experience. We start at square one and learn together bit by bit. By the end of the course you will have created (by hand) a website that looks great on phones, tablets, laptops, and desktops alike.


In the summer of 2020 the course has received a new section where we push our website live up onto the web using the free GitHub Pages service; this means you'll be able to share a link to what you've created with your friends, family, colleagues and the world!

Requirements

No prerequisite knowledge required

No special software required

Comments (0)

Report course

Please describe about the report short and clearly.

Share

Share course with your friends