shell bypass 403

UnknownSec Shell

: /lib64/python2.7/ [ drwxr-xr-x ]

name : ast.pyo
�
zfc@s�dZddlTddlmZddd�Zd�Zeed�Zd	�Zd
�Z	dd�Z
d
�Zd�Zed�Z
d�Zdefd��YZdefd��YZdS(sH
    ast
    ~~~

    The `ast` module helps Python applications to process trees of the Python
    abstract syntax grammar.  The abstract syntax itself might change with
    each Python release; this module helps to find out programmatically what
    the current grammar looks like and allows modifications of it.

    An abstract syntax tree can be generated by passing `ast.PyCF_ONLY_AST` as
    a flag to the `compile()` builtin function or by using the `parse()`
    function from this module.  The result will be a tree of objects whose
    classes all inherit from `ast.AST`.

    A modified abstract syntax tree can be compiled into a Python code object
    using the built-in `compile()` function.

    Additionally various helper functions are provided that make working with
    the trees simpler.  The main intention of the helper functions and this
    module in general is to provide an easy to use interface for libraries
    that work tightly with the python syntax (template engines for example).


    :copyright: Copyright 2008 by Armin Ronacher.
    :license: Python License.
i����(t*(t__version__s	<unknown>texeccCst|||t�S(sn
    Parse the source into an AST node.
    Equivalent to compile(source, filename, mode, PyCF_ONLY_AST).
    (tcompilet
PyCF_ONLY_AST(tsourcetfilenametmode((s/usr/lib64/python2.7/ast.pytparse scsvidd6td6td6�t|t�r?t|dd�}nt|t�rZ|j}n��fd���|�S(s�
    Safely evaluate an expression node or a string containing a Python
    expression.  The string or node provided may only consist of the following
    Python literal structures: strings, numbers, tuples, lists, dicts, booleans,
    and None.
    tNonetTruetFalseRtevalcs�t|t�r|jSt|t�r,|jSt|t�rQtt�|j��St|t	�rvt
t�|j��St|t�r�t�fd�t
|j|j�D��St|t�r�|j�kr��|jSn�t|t�r�t|jttf�r�t|jt�r�t|jjt�r�t|jt�r�t|jjtttf�r�|jj}|jj}t|jt�r�||S||Sntd��dS(Nc3s-|]#\}}�|��|�fVqdS(N((t.0tktv(t_convert(s/usr/lib64/python2.7/ast.pys	<genexpr>>ssmalformed string(t
isinstancetStrtstNumtntTuplettupletmapteltstListtlisttDicttdicttziptkeystvaluestNametidtBinOptoptAddtSubtrighttcomplextlefttinttlongtfloatt
ValueError(tnodeR)R'(Rt_safe_names(s/usr/lib64/python2.7/ast.pyR4s4N(R	R
RRt
basestringRt
Expressiontbody(tnode_or_string((RR/s/usr/lib64/python2.7/ast.pytliteral_eval(scsG���fd��t|t�s=td|jj��n�|�S(s�
    Return a formatted dump of the tree in *node*.  This is mainly useful for
    debugging purposes.  The returned string will show the names and the values
    for fields.  This makes the code impossible to evaluate, so if evaluation is
    wanted *annotate_fields* must be set to False.  Attributes such as line
    numbers and column offsets are not dumped by default.  If this is wanted,
    *include_attributes* can be set to True.
    cst�t�r�gt��D]\}}|�|�f^q}d�jjdj�rhd�|D�n
d�|D��f}�r��jr�||r�dp�d7}|dj��fd��jD��7}n|dSt�t�rddj�fd	��D��St��S(
Ns%s(%ss, css|]}d|VqdS(s%s=%sN((R
tfield((s/usr/lib64/python2.7/ast.pys	<genexpr>`scss|]\}}|VqdS(N((R
tatb((s/usr/lib64/python2.7/ast.pys	<genexpr>bst c3s.|]$}d|�t�|��fVqdS(s%s=%sN(tgetattr(R
R6(t_formatR.(s/usr/lib64/python2.7/ast.pys	<genexpr>fst)s[%s]c3s|]}�|�VqdS(N((R
tx(R:(s/usr/lib64/python2.7/ast.pys	<genexpr>js(	RtASTtiter_fieldst	__class__t__name__tjoint_attributesRtrepr(R.R6R7tfieldstrv(R:tannotate_fieldstinclude_attributes(R.s/usr/lib64/python2.7/ast.pyR:\s1!sexpected AST, got %r(RR=t	TypeErrorR?R@(R.RFRG((R:RFRGs/usr/lib64/python2.7/ast.pytdumpSs	cCs^xWdD]O}||jkr||jkrt||�rt||t||��qqW|S(s�
    Copy source location (`lineno` and `col_offset` attributes) from
    *old_node* to *new_node* if possible, and return *new_node*.
    tlinenot
col_offset(RJRK(RBthasattrtsetattrR9(tnew_nodetold_nodetattr((s/usr/lib64/python2.7/ast.pyt
copy_locationqs

 cs#�fd���|dd�|S(s{
    When you compile a node tree with compile(), the compiler expects lineno and
    col_offset attributes for every node that supports them.  This is rather
    tedious to fill in for generated nodes, so this helper adds these attributes
    recursively where not already set, by setting them to the values of the
    parent node.  It works recursively starting at *node*.
    cs�d|jkr6t|d�s*||_q6|j}nd|jkrlt|d�s`||_ql|j}nx$t|�D]}�|||�qyWdS(NRJRK(RBRLRJRKtiter_child_nodes(R.RJRKtchild(t_fix(s/usr/lib64/python2.7/ast.pyRT�sii((R.((RTs/usr/lib64/python2.7/ast.pytfix_missing_locations}s
icCsFx?t|�D]1}d|jkr
t|dd�||_q
q
W|S(s�
    Increment the line number of each node in the tree starting at *node* by *n*.
    This is useful to "move code" to a different location in a file.
    RJi(twalkRBR9RJ(R.RRS((s/usr/lib64/python2.7/ast.pytincrement_lineno�s ccsDx=|jD]2}y|t||�fVWq
tk
r;q
Xq
WdS(ss
    Yield a tuple of ``(fieldname, value)`` for each field in ``node._fields``
    that is present on *node*.
    N(t_fieldsR9tAttributeError(R.R5((s/usr/lib64/python2.7/ast.pyR>�s

ccsrxkt|�D]]\}}t|t�r0|Vq
t|t�r
x(|D]}t|t�rF|VqFqFWq
q
WdS(s�
    Yield all direct child nodes of *node*, that is, all fields that are nodes
    and all items of fields that are lists of nodes.
    N(R>RR=R(R.tnameR5titem((s/usr/lib64/python2.7/ast.pyRR�s
cCs�t|tttf�s1td|jj��n|jr�t|jdt�r�t|jdj	t
�r�|r�ddl}|j|jdj	j
�S|jdj	j
SdS(s�
    Return the docstring for the given node or None if no docstring can
    be found.  If the node provided does not have docstrings a TypeError
    will be raised.
    s%r can't have docstringsii����N(RtFunctionDeftClassDeftModuleRHR?R@R2tExprtvalueRtinspecttcleandocR(R.tcleanRa((s/usr/lib64/python2.7/ast.pyt
get_docstring�sccsTddlm}||g�}x.|rO|j�}|jt|��|Vq"WdS(s�
    Recursively yield all descendant nodes in the tree starting at *node*
    (including *node* itself), in no specified order.  This is useful if you
    only want to modify nodes in place and don't care about the context.
    i����(tdequeN(tcollectionsRetpoplefttextendRR(R.Rettodo((s/usr/lib64/python2.7/ast.pyRV�s	tNodeVisitorcBs eZdZd�Zd�ZRS(s<
    A node visitor base class that walks the abstract syntax tree and calls a
    visitor function for every node found.  This function may return a value
    which is forwarded by the `visit` method.

    This class is meant to be subclassed, with the subclass adding visitor
    methods.

    Per default the visitor functions for the nodes are ``'visit_'`` +
    class name of the node.  So a `TryFinally` node visit function would
    be `visit_TryFinally`.  This behavior can be changed by overriding
    the `visit` method.  If no visitor function exists for a node
    (return value `None`) the `generic_visit` visitor is used instead.

    Don't use the `NodeVisitor` if you want to apply changes to nodes during
    traversing.  For this a special visitor exists (`NodeTransformer`) that
    allows modifications.
    cCs/d|jj}t|||j�}||�S(s
Visit a node.tvisit_(R?R@R9t
generic_visit(tselfR.tmethodtvisitor((s/usr/lib64/python2.7/ast.pytvisit�scCs�x{t|�D]m\}}t|t�r[xO|D]%}t|t�r/|j|�q/q/Wq
t|t�r
|j|�q
q
WdS(s9Called if no explicit visitor function exists for a node.N(R>RRR=Rp(RmR.R5R`R[((s/usr/lib64/python2.7/ast.pyRl�s
(R@t
__module__t__doc__RpRl(((s/usr/lib64/python2.7/ast.pyRj�s	tNodeTransformercBseZdZd�ZRS(s\
    A :class:`NodeVisitor` subclass that walks the abstract syntax tree and
    allows modification of nodes.

    The `NodeTransformer` will walk the AST and use the return value of the
    visitor methods to replace or remove the old node.  If the return value of
    the visitor method is ``None``, the node will be removed from its location,
    otherwise it is replaced with the return value.  The return value may be the
    original node in which case no replacement takes place.

    Here is an example transformer that rewrites all occurrences of name lookups
    (``foo``) to ``data['foo']``::

       class RewriteName(NodeTransformer):

           def visit_Name(self, node):
               return copy_location(Subscript(
                   value=Name(id='data', ctx=Load()),
                   slice=Index(value=Str(s=node.id)),
                   ctx=node.ctx
               ), node)

    Keep in mind that if the node you're operating on has child nodes you must
    either transform the child nodes yourself or call the :meth:`generic_visit`
    method for the node first.

    For nodes that were part of a collection of statements (that applies to all
    statement nodes), the visitor may also return a list of nodes rather than
    just a single node.

    Usually you use the transformer like this::

       node = YourTransformer().visit(node)
    cCsxt|�D]�\}}t||d�}t|t�r�g}xp|D]h}t|t�r�|j|�}|dkr}qGq�t|t�s�|j|�qGq�n|j|�qGW||(q
t|t�r
|j|�}|dkr�t	||�q
t
|||�q
q
W|S(N(R>R9R	RRR=RpRhtappendtdelattrRM(RmR.R5t	old_valuet
new_valuesR`RN((s/usr/lib64/python2.7/ast.pyRl"s(

	
(R@RqRrRl(((s/usr/lib64/python2.7/ast.pyRs�s"N(Rrt_astRRR4R
RRIRQRURWR>RRRdRVtobjectRjRs(((s/usr/lib64/python2.7/ast.pyt<module>s
	+					%

© 2025 UnknownSec
Web Design for Beginners | Anyleson - Learning Platform
INR (₹)
India Rupee
$
United States Dollar
Web Design for Beginners

Web Design for Beginners

in Design
Created by Linda Anderson
+2
5 Users are following this upcoming course
Course Published
This course was published already and you can check the main course
Course
Web Design for Beginners
in Design
4.25
1:45 Hours
8 Jul 2021
₹11.80

What you will learn?

Create any website layout you can imagine

Support any device size with Responsive (mobile-friendly) Design

Add tasteful animations and effects with CSS3

Course description

You can launch a new career in web development today by learning HTML & CSS. You don't need a computer science degree or expensive software. All you need is a computer, a bit of time, a lot of determination, and a teacher you trust. I've taught HTML and CSS to countless coworkers and held training sessions for fortune 100 companies. I am that teacher you can trust. 


Don't limit yourself by creating websites with some cheesy “site-builder" tool. This course teaches you how to take 100% control over your webpages by using the same concepts that every professional website is created with.


This course does not assume any prior experience. We start at square one and learn together bit by bit. By the end of the course you will have created (by hand) a website that looks great on phones, tablets, laptops, and desktops alike.


In the summer of 2020 the course has received a new section where we push our website live up onto the web using the free GitHub Pages service; this means you'll be able to share a link to what you've created with your friends, family, colleagues and the world!

Requirements

No prerequisite knowledge required

No special software required

Comments (0)

Report course

Please describe about the report short and clearly.

Share

Share course with your friends