shell bypass 403

UnknownSec Shell

: /usr/lib64/python3.6/__pycache__/ [ drwxr-xr-x ]

name : shelve.cpython-36.pyc
3


 \C!�@s�dZddlmZmZddlmZddlZddddgZGd	d
�d
ej�Z	Gdd�dej�Z
Gdd�de
�ZGd
d�de
�Zddd�Z
dS)a�
Manage shelves of pickled objects.

A "shelf" is a persistent, dictionary-like object.  The difference
with dbm databases is that the values (not the keys!) in a shelf can
be essentially arbitrary Python objects -- anything that the "pickle"
module can handle.  This includes most class instances, recursive data
types, and objects containing lots of shared sub-objects.  The keys
are ordinary strings.

To summarize the interface (key is a string, data is an arbitrary
object):

        import shelve
        d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

        d[key] = data   # store data at key (overwrites old data if
                        # using an existing key)
        data = d[key]   # retrieve a COPY of the data at key (raise
                        # KeyError if no such key) -- NOTE that this
                        # access returns a *copy* of the entry!
        del d[key]      # delete data stored at key (raises KeyError
                        # if no such key)
        flag = key in d # true if the key exists
        list = d.keys() # a list of all existing keys (slow!)

        d.close()       # close it

Dependent on the implementation, closing a persistent dictionary may
or may not be necessary to flush changes to disk.

Normally, d[key] returns a COPY of the entry.  This needs care when
mutable entries are mutated: for example, if d[key] is a list,
        d[key].append(anitem)
does NOT modify the entry d[key] itself, as stored in the persistent
mapping -- it only modifies the copy, which is then immediately
discarded, so that the append has NO effect whatsoever.  To append an
item to d[key] in a way that will affect the persistent mapping, use:
        data = d[key]
        data.append(anitem)
        d[key] = data

To avoid the problem with mutable entries, you may pass the keyword
argument writeback=True in the call to shelve.open.  When you use:
        d = shelve.open(filename, writeback=True)
then d keeps a cache of all entries you access, and writes them all back
to the persistent mapping when you call d.close().  This ensures that
such usage as d[key].append(anitem) works as intended.

However, using keyword argument writeback=True may consume vast amount
of memory for the cache, and it may make d.close() very slow, if you
access many of d's entries after opening it in this way: d has no way to
check which of the entries you access are mutable and/or which ones you
actually mutate, so it must cache, and write back at close, all of the
entries that you access.  You can call d.sync() to write back all the
entries in the cache, and empty the cache (d.sync() also synchronizes
the persistent dictionary on disk, if feasible).
�)�Pickler�	Unpickler)�BytesION�Shelf�
BsdDbShelf�DbfilenameShelf�openc@s8eZdZdZdd�ZeZZZZZ	Z
dd�ZdS)�_ClosedDictz>Marker for a closed dict.  Access attempts raise a ValueError.cGstd��dS)Nz!invalid operation on closed shelf)�
ValueError)�self�args�r
�/usr/lib64/python3.6/shelve.py�closedEsz_ClosedDict.closedcCsdS)Nz<Closed Dictionary>r
)rr
r
r�__repr__Isz_ClosedDict.__repr__N)�__name__�
__module__�__qualname__�__doc__r�__iter__�__len__�__getitem__�__setitem__�__delitem__�keysrr
r
r
rr	Bsr	c@s|eZdZdZddd�Zdd�Zd	d
�Zdd�Zd d
d�Zdd�Z	dd�Z
dd�Zdd�Zdd�Z
dd�Zdd�Zdd�ZdS)!rz�Base class for shelf implementations.

    This is initialized with a dictionary-like object.
    See the module's __doc__ string for an overview of the interface.
    NF�utf-8cCs.||_|dkrd}||_||_i|_||_dS)N�)�dict�	_protocol�	writeback�cache�keyencoding)rr�protocolrr!r
r
r�__init__TszShelf.__init__ccs&x |jj�D]}|j|j�VqWdS)N)rr�decoder!)r�kr
r
rr^szShelf.__iter__cCs
t|j�S)N)�lenr)rr
r
rrbsz
Shelf.__len__cCs|j|j�|jkS)N)�encoder!r)r�keyr
r
r�__contains__eszShelf.__contains__cCs|j|j�|jkr||S|S)N)r'r!r)rr(�defaultr
r
r�gethsz	Shelf.getcCsZy|j|}WnFtk
rTt|j|j|j��}t|�j�}|jrP||j|<YnX|S)N)	r �KeyErrorrrr'r!r�loadr)rr(�value�fr
r
rrmszShelf.__getitem__cCsF|jr||j|<t�}t||j�}|j|�|j�|j|j|j	�<dS)N)
rr rrr�dump�getvaluerr'r!)rr(r.r/�pr
r
rrws

zShelf.__setitem__cCs6|j|j|j�=y|j|=Wntk
r0YnXdS)N)rr'r!r r,)rr(r
r
rrs
zShelf.__delitem__cCs|S)Nr
)rr
r
r�	__enter__�szShelf.__enter__cCs|j�dS)N)�close)r�typer.�	tracebackr
r
r�__exit__�szShelf.__exit__cCsf|jdkrdSz0|j�y|jj�Wntk
r:YnXWdyt�|_Wnd|_YnXXdS)N)r�syncr4�AttributeErrorr	)rr
r
rr4�s

zShelf.closecCst|d�sdS|j�dS)Nr)�hasattrr4)rr
r
r�__del__�s
z
Shelf.__del__cCsX|jr>|jr>d|_x|jj�D]\}}|||<qWd|_i|_t|jd�rT|jj�dS)NFTr8)rr �itemsr:rr8)rr(�entryr
r
rr8�sz
Shelf.sync)NFr)N)rrrrr#rrr)r+rrrr3r7r4r;r8r
r
r
rrMs
	

c@sBeZdZdZddd�Zdd�Zd	d
�Zdd�Zd
d�Zdd�Z	dS)ra�Shelf implementation using the "BSD" db interface.

    This adds methods first(), next(), previous(), last() and
    set_location() that have no counterpart in [g]dbm databases.

    The actual database must be opened using one of the "bsddb"
    modules "open" routines (i.e. bsddb.hashopen, bsddb.btopen or
    bsddb.rnopen) and passed to the constructor.

    See the module's __doc__ string for an overview of the interface.
    NF�utf-8cCstj|||||�dS)N)rr#)rrr"rr!r
r
rr#�szBsdDbShelf.__init__cCs0|jj|�\}}t|�}|j|j�t|�j�fS)N)r�set_locationrr$r!rr-)rr(r.r/r
r
rr?�szBsdDbShelf.set_locationcCs.t|j�\}}t|�}|j|j�t|�j�fS)N)�nextrrr$r!rr-)rr(r.r/r
r
rr@�szBsdDbShelf.nextcCs.|jj�\}}t|�}|j|j�t|�j�fS)N)r�previousrr$r!rr-)rr(r.r/r
r
rrA�szBsdDbShelf.previouscCs.|jj�\}}t|�}|j|j�t|�j�fS)N)r�firstrr$r!rr-)rr(r.r/r
r
rrB�szBsdDbShelf.firstcCs.|jj�\}}t|�}|j|j�t|�j�fS)N)r�lastrr$r!rr-)rr(r.r/r
r
rrC�szBsdDbShelf.last)NFr>)
rrrrr#r?r@rArBrCr
r
r
rr�s
c@seZdZdZddd�ZdS)rz�Shelf implementation using the "dbm" generic dbm interface.

    This is initialized with the filename for the dbm database.
    See the module's __doc__ string for an overview of the interface.
    �cNFcCs$ddl}tj||j||�||�dS)Nr)�dbmrr#r)r�filename�flagr"rrEr
r
rr#�szDbfilenameShelf.__init__)rDNF)rrrrr#r
r
r
rr�srDFcCst||||�S)a�Open a persistent dictionary for reading and writing.

    The filename parameter is the base filename for the underlying
    database.  As a side-effect, an extension may be added to the
    filename and more than one file may be created.  The optional flag
    parameter has the same interpretation as the flag parameter of
    dbm.open(). The optional protocol parameter specifies the
    version of the pickle protocol.

    See the module's __doc__ string for an overview of the interface.
    )r)rFrGr"rr
r
rr�s
)rDNF)r�picklerr�ior�collections�__all__�MutableMappingr	rrrrr
r
r
r�<module>9sb+

© 2025 UnknownSec
Web Design for Beginners | Anyleson - Learning Platform
INR (₹)
India Rupee
$
United States Dollar
Web Design for Beginners

Web Design for Beginners

in Design
Created by Linda Anderson
+2
5 Users are following this upcoming course
Course Published
This course was published already and you can check the main course
Course
Web Design for Beginners
in Design
4.25
1:45 Hours
8 Jul 2021
₹11.80

What you will learn?

Create any website layout you can imagine

Support any device size with Responsive (mobile-friendly) Design

Add tasteful animations and effects with CSS3

Course description

You can launch a new career in web development today by learning HTML & CSS. You don't need a computer science degree or expensive software. All you need is a computer, a bit of time, a lot of determination, and a teacher you trust. I've taught HTML and CSS to countless coworkers and held training sessions for fortune 100 companies. I am that teacher you can trust. 


Don't limit yourself by creating websites with some cheesy “site-builder" tool. This course teaches you how to take 100% control over your webpages by using the same concepts that every professional website is created with.


This course does not assume any prior experience. We start at square one and learn together bit by bit. By the end of the course you will have created (by hand) a website that looks great on phones, tablets, laptops, and desktops alike.


In the summer of 2020 the course has received a new section where we push our website live up onto the web using the free GitHub Pages service; this means you'll be able to share a link to what you've created with your friends, family, colleagues and the world!

Requirements

No prerequisite knowledge required

No special software required

Comments (0)

Report course

Please describe about the report short and clearly.

Share

Share course with your friends